Email updates

Keep up to date with the latest news and content from Molecular Cytogenetics and BioMed Central.

Open Access Open Badges Research

Chromosome mapping of repetitive sequences in Anostomidae species: implications for genomic and sex chromosome evolution

Edson Lourenço da Silva, Rafael Splendore de Borba and Patrícia Pasquali Parise-Maltempi*

Author Affiliations

Departamento de Biologia, Laboratório de Citogenética, Instituto de Biociências, Universidade Estadual Paulista “Julio de Mesquita Filho” - UNESP, Av. 24A, 1515, Rio Claro, SP, CEP 13506-900, Brazil

For all author emails, please log on.

Molecular Cytogenetics 2012, 5:45  doi:10.1186/1755-8166-5-45

Published: 11 December 2012



Members of the Anostomidae family provide an interesting model system for the study of the influence of repetitive elements on genome composition, mainly because they possess numerous heterochromatic segments and a peculiar system of female heterogamety that is restricted to a few species of the Leporinus genus. The aim of this study was to isolate and identify important new repetitive DNA elements in Anostomidae through restriction enzyme digestion, followed by cloning, characterisation and chromosome mapping of this fragment. To identify repetitive elements in other Leporinus species and expand on studies of repetitive elements in Anostomidae, hybridisation experiments were also performed using previously described probes of LeSpeI repetitive elements.


The 628-base pair (bp) LeSpeII fragment was hybridised to metaphase cells of L. elongatus individuals as well as those of L. macrocephalus, L. obtusidens, L. striatus, L. lacustris, L. friderici, Schizodon borellii and S. isognathus. In L. elongatus, both male and female cells contained small clusters of LeSpeII repetitive elements dispersed on all of the chromosomes, with enrichment near most of the terminal portions of the chromosomes. In the female sex chromosomes of L. elongatus (Z2,Z2/W1W2), however, this repeated element was absent. In the remaining species, a dispersed pattern of hybridisation was observed on all chromosomes irrespective of whether or not they were sex chromosomes. The repetitive element LeSpeI produced positive hybridisations signals only in L. elongatus, L. macrocephalus and L. obtusidens, i.e., species with differentiated sex chromosomes. In the remaining species, the LeSpeI element did not produce hybridisation signals.


Results are discussed in terms of the effects of repetitive sequences on the differentiation of the Anostomidae genome, especially with respect to sex chromosome evolution. LeSpeII showed hybridisation patterns typical of Long Interspersed Elements (LINEs). The differential distribution of this element may be linked to sex chromosome differentiation in L. elongatus species. The relationship between sex chromosome specificity and the LeSpeI element is confirmed in the species L. elongatus, L. macrocephalus and L. obtusidens.

Chromosomes; FISH; Heterochromatin; Neotropical fish; Sex chromosomes